

ISSUE 1 | 2025

Mitochondrial Cocktail Therapy

Targeting Mitochondrial Dysfunction to
Restore Neurological Function

MITOCHONDRIAL COCKTAIL IN NEUROLOGICAL DISORDERS

Role of mitochondrial dysfunction in neurological disorders

Mitochondria serve as the driving force behind numerous neurological functions by generating cellular energy and regulating redox balance. They are essential for adenosine triphosphate (ATP) production, calcium homeostasis, and overall neuronal survival. When mitochondrial function is impaired, oxidative phosphorylation disrupts, resulting in energy depletion, accumulation of reactive oxygen species (ROS), and subsequent neuronal apoptosis. The brain's high energy demand and low antioxidant capacity makes it particularly vulnerable. Consequently, mitochondrial impairment is a central mechanism in neurological diseases, where oxidative stress and inflammation drive progressive neuronal injury.¹

Mitochondrial disorders refers to an umbrella term that exhibits clinical heterogeneity, affecting single or multiple organ systems with variable age of onset. Although any organ may be affected, highly energy-dependent tissues such as skeletal muscle and the nervous system are most commonly involved. The coexistence of neurological or muscular symptoms with multi-organ involvement, especially when three or more systems are affected should raise suspicion. Mitochondrial disorders are typically progressive, with fluctuating symptoms and gradual deterioration, often leading to neurological regression or loss of acquired skills over time.²

When to suspect mitochondrial disorders?^{3,4}

Neurological and neuromuscular clues	Multisystem involvement	Family history and inheritance patterns
<ul style="list-style-type: none">Recurrent stroke-like episodesSeizures, myoclonus, ataxia, or migraine headachesCognitive decline and neurologic dysfunctionProgressive external ophthalmoplegia, ptosis, or optic atrophyDevelopmental delay, hypotonia, exercise intolerance, or proximal myopathy.	<ul style="list-style-type: none">Cardiomyopathy, arrhythmias, or conduction defectsSensorineural hearing loss, pigmentary retinopathy, or diabetes mellitusShort stature, growth failure, or delayed pubertyGastrointestinal dysmotility, recurrent vomiting, or even hepatic failure.	<ul style="list-style-type: none">Maternal inheritance pattern suggesting mtDNA mutationVariable expression within a family due to mDNA heteroplasmy.

DIAGNOSE

Mitochondrial disorders are diagnosed based on a multidisciplinary approach combining biochemical, genetic, and imaging investigations to confirm mitochondrial dysfunction.⁵

Blood, urine, and spinal fluid tests⁵

- **Complete blood count (CBC):** Evaluates hematologic abnormalities that may be associated with mitochondrial diseases
- **Organic acid analysis:** Urinary organic acids often show characteristic alterations in mitochondrial disease patients. Elevations of malate and fumarate strongly correlates with mitochondrial dysfunction
- **Amino acid analysis:** Elevated levels of amino acids such as alanine, glycine, proline, and threonine reflect redox imbalance secondary to mitochondrial dysfunction
- **Total and free carnitine levels and acylcarnitines:** Permits identification of primary or secondary fatty acid oxidation defects in patients with mitochondrial diseases
- **Lactate and pyruvate:** An elevated lactate level (>3 mmol/L) is frequently indicative of mitochondrial dysfunction. A high lactate/pyruvate ratio suggests defects in the electron transport chain (ETC)
- **Creatine phosphokinase and uric acid:** Increased creatine phosphokinase (CPK) and uric acid levels are common during episodes of acute rhabdomyolysis in patients with fatty acid oxidation disorders associated with mitochondrial dysfunction
- **Transaminases and albumin:** Abnormal transaminases and albumin levels may indicate mitochondrial diseases associated with liver pathology, often due to mtDNA depletion or generalized hepatic dysfunction.

Genetic testing⁵

- Next-generation sequencing (NGS) of the mitochondrial DNA genome is the gold standard for detecting point mutations, deletions, and low-level heteroplasmy
- Heteroplasmy analysis in urine can selectively be more informative and accurate than testing in blood alone, especially in cases of MELAS
- mtDNA deletion and duplication testing are performed in cases of suspected mitochondrial disease via NGS of the mtDNA genome.

Muscle or other tissue biopsy tests⁵

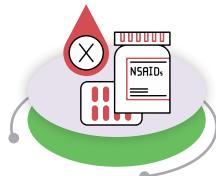
- Biopsy remains valuable when genetic results are inconclusive. Histologic stains and electron microscopy assess structural mitochondrial abnormalities
- Functional assays in tissue (typically muscle) evaluate the functions of mitochondrial ETC or respiratory chain. Measurement of muscle coenzyme Q10 levels represents a potentially treatable form of mitochondrial dysfunction.

*MELAS: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

Neuroimaging⁵

- Includes magnetic resonance imaging (MRI), spectroscopy, computed tomography (CT), and proton Magnetic Resonance spectroscopy
- Brain MRI may reveal stroke-like lesions, white matter disease, or basal ganglia involvement. Magnetic resonance spectroscopy (MRS) detects elevated lactate, aiding diagnosis and disease monitoring.

TREAT


Supportive and dietary strategies⁶

Nutrition optimization: Assessment of caloric requirements using resting metabolic rate measurement and correction of nutrient deficiencies

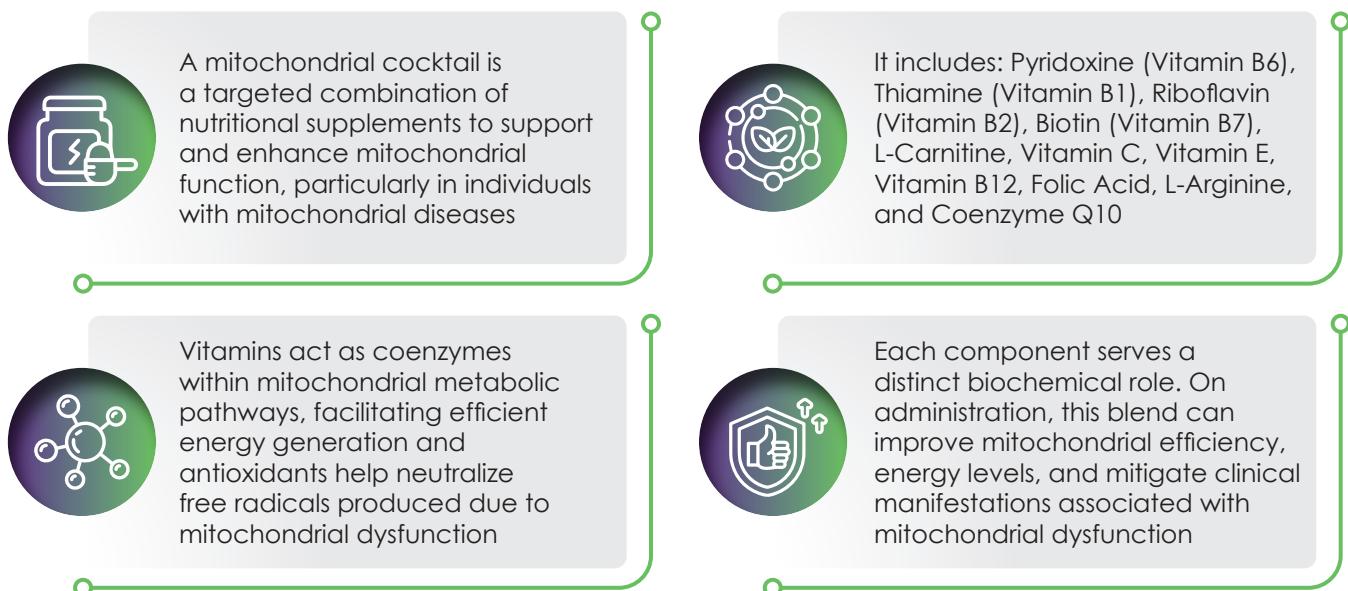
Vaccination: Recommended to prevent infections and can be spaced to reduce metabolic stress

Avoidance of mitochondrial toxins: Toxins that impair mitochondrial function (e.g., valproate, aminoglycosides, statins, linezolid)

Ketogenic diet: Improves mitochondrial efficiency; indicated for pyruvate dehydrogenase deficiency but contraindicated in fatty acid oxidation and pyruvate carboxylase defects

Hydration and electrolyte balance: Adequate fluid and electrolyte intake, especially during illness

Physical activity: Gentle aerobic exercise promotes mitochondrial biogenesis and reduces fatigue


Pharmacological treatment⁶⁻⁹

Management of mitochondrial disorders is primarily directed toward alleviating symptoms, preventing disease progression, and monitoring for associated complications

A key adjunctive approach involves the use of a mitochondrial cocktail, which combines multiple vitamins and other cofactors to enhance oxidative phosphorylation and reduce oxidative stress

Mitochondrial cocktail⁶⁻⁹

Components of mitochondrial cocktail and their mechanistic roles⁶⁻⁸

Component	Mechanistic role	Key function
Coenzyme Q10	Integral component of the mitochondrial electron transport chain	<ul style="list-style-type: none"> Antioxidant role ATP production Enhances mitochondrial stability
L-arginine	Produces nitric oxide, which has neurotransmitter and vasodilatory properties	<ul style="list-style-type: none"> Increases blood flow Reduces oxidative stress
Folic acid (Vitamin B9)	Vital for DNA synthesis and repair	<ul style="list-style-type: none"> Supports folate metabolism Reduces oxidative stress
Vitamin E	Lipid soluble antioxidant; prevents neuronal oxidative damage	Shields neurons from oxidative damage
Vitamin C	Reduces reactive oxygen species	Protects mitochondria from oxidative stress
L-Carnitine	Critical role in mitochondrial β -oxidation of fatty acids and esterification of free fatty acids	<ul style="list-style-type: none"> ATP production Removes accumulated toxic acyl compounds
Biotin (Vitamin B7)	Cofactor for carboxylases	<ul style="list-style-type: none"> Supports carboxylation and maintains energy metabolism
Riboflavin (Vitamin B2)	Serves as a flavoprotein precursor and involved in other mitochondrial processes	Strengthens mitochondrial function
Thiamine (Vitamin B1)	Cofactor for pyruvate dehydrogenase	Antioxidant role
Vitamin B12	Required for methylation of myelin basic protein and reduction of homocysteine	Promotes energy metabolism and prevents neurotoxicity
Pyridoxine (Vitamin B6)	Coenzyme in amino acid metabolism and neurotransmitter synthesis	Prevents oxidative damage

Disease indications which can benefit with mitochondrial cocktail therapy¹⁻⁴

Inborn errors of metabolism (IEMs)

Myopathy or hypotonia

Mitochondrial disorders

Exercise intolerance

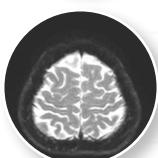
Autism spectrum disorder

Migraine

Drug resistant epilepsy

Neuropathy

Encephalopathy- stroke,
seizures, regression


Sensitivity to general anesthesia

Developmental delay

Dysmotility

White matter disease

Benefits of mitochondrial cocktail

Increases energy through adenosine triphosphate production⁸

Supports neuronal health⁶

Reduces free radical generation and oxidative stress⁸

Improves exercise tolerance and reduces fatigue⁶

Enhances mitochondrial biogenesis and function⁷

Stabilizes cellular metabolism and prevents metabolic decompensation⁶

Evidences from literature

1. Mitochondrial supplement improves function and mitochondrial Activity in autism spectrum disorder (ASD)⁹

A randomized study involving 16 children with Autism spectrum disorder (mean age 9.4 years; 88% male) evaluated whether a mitochondrial targeted dietary supplement could improve mitochondrial function and ASD symptoms. The supplement significantly improved mitochondrial biomarkers, including normalization of citrate synthase and complex IV activity measured via MitoSwab. It also enhanced mitochondrial resilience to oxidative stress in peripheral blood mononuclear cells using the Seahorse XFe96 assay, with the greatest improvements observed in children with more severe neurodevelopmental impairment. Clinically, parent-reported outcomes showed meaningful improvements in neurodevelopment, social withdrawal, and hyperactivity.

Conclusion: Children with ASD and mitochondrial abnormalities demonstrates that a simple, well-tolerated mitochondrial targeted dietary supplement can improve mitochondrial physiology and ASD symptoms.

2. Clinical outcomes in acute encephalopathy patients (status epilepticus with fever) treated with a mitochondrial cocktail¹⁰

A retrospective study evaluated clinical outcomes in 21 patients with acute encephalopathy associated with fever-related status epilepticus, comparing those treated with a mitochondrial nutrient "cocktail" to those who were not. The cocktail included vitamin B1, vitamin C, biotin, vitamin E, CoQ10, and L-carnitine. Patients were categorized as having either biphasic AESD or a monophasic disease pattern, and long-term neurological complications were assessed. Results showed that patients who received the mitochondrial cocktail earlier experienced fewer neurological problems, while delays in starting treatment were linked to poorer outcomes.

Conclusion: The use of a mitochondrial nutrient cocktail in acute encephalopathy may reduce neurological damage, especially if given early, supporting the concept of metabolic support in mitochondrial dysfunction related brain injury.

3. Riboflavin in neurological diseases: Therapeutic advances, metabolic insights, and emerging genetic strategies¹¹

A literature review assessed the therapeutic potential of riboflavin (vitamin B2), used alone or with CoQ10 or L-carnitine, in neurological disorders linked to mitochondrial dysfunction. Evidence from open-label clinical data and literature suggests that riboflavin-based regimens may offer neurological improvements with good safety. A study in 68 patients reported measurable gains in clinical scores with minimal toxicity. The strongest evidence exists in migraine, where riboflavin combined with CoQ10 and magnesium has significantly reduced attack frequency and headache days in controlled trials.

Conclusion: Riboflavin is a low-risk, potentially beneficial component for mitochondrial-targeted therapy; combining it with CoQ10 or L-carnitine makes mechanistic sense and warrants further controlled trials.

References: 1. Alshiai EE, Abdulghaney MI, Wadan AS, et al. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. *Life Sci.* 2023;334:122257. 2. Davison JE, Rahman S. Recognition, investigation and management of mitochondrial disease. *Arch Dis Child.* 2017;102(11):1082-1090. 3. Keogh MJ, Chinnery PF. How to spot mitochondrial disease in adults. *Clin Med (Lond).* 2013;13(1):87-92. 4. Kanungo S, Morton J, Neelakantan M, et al. Mitochondrial disorders. *Ann Transl Med.* 2018;6(24):475. 5. Parikh S, Goldstein A, Koenig MK, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. *Genet Med.* 2015;17(9):689-701. 6. Parikh S, Saneto R, Falk MJ, et al. A modern approach to the treatment of mitochondrial disease. *Curr Treat Options Neurol.* 2009;11(6):414-30. 7. Ball M, van Bergen NJ, Compton AG, et al. Therapies for Mitochondrial Disease: Past, Present, and Future. *J Inherit Metab Dis.* 2025;48(4):e70065. 8. Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. *Curr Opin Pediatr.* 2020 Dec;32(6):707-718. 9. Hill Z, McCarty PJ, Boles RG, Frye RE. A Mitochondrial Supplement Improves Function and Mitochondrial Activity in Autism: A Double-Blind Placebo-Controlled Cross-Over Trial. *Int J Mol Sci.* 2025;26(6):2479. 10. Omata T, Fujii K, Takanashi J, Murayama K, Takayanagi M, Muta K, Kodama K, Iida Y, Watanabe Y, Shimojo N. Drugs indicated for mitochondrial dysfunction as treatments for acute encephalopathy with onset of febrile convulsive status epilepticus. *J Neurol Sci.* 2016;360:57-60. 11. Tao Z, Huo J, Hao X, Liang J. Riboflavin in neurological diseases: therapeutic advances, metabolic insights, and emerging genetic strategies. *Front Neurol.* 2025;16:1663136.

From a Hope to Support!

Intellify's
unibrain™
Powder Sachet

For Mitochondrial Support.

Indications

- Inborn errors of metabolism (IEMs)
- Mitochondrial Disorders
- Autism Spectrum Disorder
- Drug Resistant Epilepsy
- Encephalopathy-Stroke, Seizures, Regression
- Developmental Delay
- White Matter Disease
- Myopathy or Hypotonia
- Exercise intolerance
- Migraines & Neuropathy
- Sensitivity to General Anaesthesia
- Dysmotility

Dosage
 1 Sachet Daily in 50ml of Water upto 10 Kg of body weight

Each Sachet
 Contains 3.5 gm

Each Pack
 30 Sachets

Minimum duration
 6 Month

515, 5th floor, Vastu Elite Square, Opp. M.I.T. College, Beed Bypass Rd,
 Aurangabad, Chh. Sambhajinagar, MH, India – 431003
 Helpline number : +91 8180883009 email ID: hello@intellifyhealth.com Website: <https://intellifyhealth.com>

For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only